
Diffusion of colloidal fluids in random porous media

M. A. Chávez-Rojo
Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Venustiano Carranza S/N,

31000 Chihuahua, Chihuahua, Mexico

R. Juárez-Maldonado and M. Medina-Noyola
Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64,

78000 San Luis Potosí, San Luis Potosí, Mexico
�Received 14 November 2007; published 14 April 2008�

The diffusive relaxation of a colloidal fluid adsorbed in a porous medium depends on many factors, includ-
ing the concentration and composition of the adsorbed colloidal fluid, the average structure of the porous
matrix, and the nature of the colloid-colloid and colloid-substrate interactions. A simple manner to describe
these effects is to model the porous medium as a set of spherical particles fixed in space at random positions
with prescribed statistical structural properties. Within this model one may describe the relaxation of concen-
tration fluctuations of the adsorbed fluid by simply setting to zero the short-time mobility of one species �the
porous matrix� in a theory of the dynamics of equilibrium colloidal mixtures, or by extending such dynamic
theory to explicitly consider the porous matrix as a random external field, as recently done in the framework of
mode coupling theory �V. Krakoviack, Phys. Rev. Lett. 94, 065703 �2005��. Here we consider the first ap-
proach and employ the self-consistent generalized Langevin equation �SCGLE� theory of the dynamics of
equilibrium colloidal mixtures, to describe the dynamics of the mobile component. We focus on the short- and
intermediate-time regimes, which we compare with Brownian dynamics simulations involving a binary mix-
ture with screened Coulomb interactions for two models of the average static structure of the matrix: a porous
matrix constructed by quenching configurations of an equilibrium mixture in which both species were first
equilibrated together, and a preexisting matrix with prescribed average structure, in which we later add the
mobile species. We conclude that in both cases, if the correct static structure factors are provided as input, the
SCGLE theory correctly predicts the main features of the dynamics of the permeating fluid.
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Many relevant systems and processes in industry and na-
ture involve the diffusion of colloidal dispersions through
porous media �1�. The most relevant issues involve either the
equilibrium and phase behavior �2� or the transport and dy-
namic properties �3� of the permeating colloidal liquid. Thus,
one would like to understand, from a fundamental perspec-
tive, how these properties depend on factors such as the po-
rosity and morphology of the matrix, the nature of the inter-
action forces �among the particles and with the porous
matrix�, or the concentration of the colloidal dispersion.
Some of these issues require the development or extension of
the fundamental description of the dynamic behavior of bulk
colloidal systems �4,5� to the case in which these systems
permeate a porous matrix.

The fundamental study of the phenomena above rely on
simplified models. Thus, a porous medium is sometimes
modeled as a simple geometry �planar slit, cylindrical pore,
etc.� to describe local phenomena, whereas random arrays of
locally regular pores incorporate the intrinsic randomness of
most natural or synthetic porous materials �1�. One may
adopt, instead, a simplified model of a random porous me-
dium, namely, a matrix of spherical particles with random
but fixed positions. This matrix is permeated by a colloidal
liquid, whose dynamics we wish to understand. Such model
systems have been employed to describe mostly equilibrium
structural properties �6�, although simple model experimental
realizations of this system have been prepared �7�, in which
one could also measure the dynamic properties of the mobile
species. The interpretation of such measurements requires

sound theoretical schemes to describe the dynamics of the
permeating dispersion. One possible approach uses available
theories of the dynamic properties of bulk colloidal mixtures
�8–10� in which the mobility of one of the species is artifi-
cially set equal to zero. Another possibility is to first refor-
mulate these theories to explicitly consider the porous matrix
as a random external field �11�. In this Rapid Communication
we demonstrate that the first of these approaches suffices to
correctly predict the main features of the dynamics of the
permeating fluid, provided the correct average static struc-
ture of the matrix and of the adsorbed fluid is available.

This conclusion is based on the use of the multicompo-
nent self-consistent generalized Langevin equation �SCGLE�
theory of colloid dynamics �9� to describe the relaxation of
concentration fluctuations of the mobile component in the
model porous matrix. By setting the free-diffusion coefficient
of one species to zero, this theory is readily adapted to the
description of the dynamics of the model system above, thus
allowing the numerical calculation of the partial intermediate
scattering function F�k , t� of the mobile species. As a con-
crete and illustrative application, here we report the theoret-
ical predictions for a binary colloidal mixture of particles
interacting through screened Coulomb potentials in which
one of the two species plays the role of the porous matrix.
The theoretical results for this specific system are compared
with the corresponding results of a Brownian dynamics �BD�
simulation on a model system consisting of N=N1+N2
Brownian particles in a volume V, with N1�=n1V� particles of
species 1 and N2�=n2V� particles of species 2 interacting
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through direct forces, but not through hydrodynamic interac-
tions. A more limited version of this exercise, referring only
to tracer diffusion phenomena, was carried out by
Viramontes-Gamboa et al. �12� in 1995.

We carry out two kinds of computer experiments that dif-
fer in the manner we generate the structure of the porous
matrix. In the first kind, we let the N particles of both species
undergo Brownian motion, according to the conventional
Brownian dynamics algorithm �13� with the same free-
diffusion coefficient D1

0=D2
0=D0 until equilibrium is

reached. At this point, we artificially arrest the motion of the
particles of species 2 by setting D2

0=0 at an arbitrary con-
figuration. In the second kind of experiment, a preexisting
matrix is formed in the absence of the mobile species, by
choosing the arrested configurations according to a pre-
scribed distribution, afterward “pouring” the mobile particles
into this matrix of obstacles. The prescribed average struc-
ture of the matrix that we consider below corresponds to the
structure of an equilibrium monocomponent fluid of species
2. In both cases, after choosing a particular configuration of
the matrix, we let the mobile species equilibrate in the exter-
nal field of the fixed particles at that particular frozen con-
figuration, and then proceed to the calculation of the dy-
namic properties of interest. Since these properties depend
on the specific configuration of the fixed particles, and in
order to average out this dependence, the results presented
here correspond to an average of over more than 50 different
configurations of the porous matrix. In both cases we also
record the radial distribution functions between the two spe-
cies, to be employed as the static input required by the
SCGLE theory. In our illustrative application, the direct in-
teractions are described by a hard sphere plus a strong repul-
sive screened Coulomb interaction. For simplicity, we as-
sume that both species have the same hard-sphere diameter
�, so that the potential �in units of the thermal energy kBT
=�−1� is given by �u���r�= +� for r��, and for r�� by

�u���r� = �K�K�

exp�− z�r/� − 1��
r/�

. �1�

One may think of the parameter �K� as proportional to the
electric charge Q� of species �, and the parameter z=�� as
the dimensionless inverse Debye length � �5�.

The relevant dynamic information of an equilibrium
	-component colloidal suspension is contained in the 	
	
matrix F�k , t� whose elements are the partial intermediate
scattering functions

F���k,t� � ��n��k,t� − �n��k,t����n��− k,0� − �n��− k,0���� ,

where n��k , t��	i=1
N� exp�ik ·ri�t�� /�N�, with ri�t� being the

position of particle i of species � at time t. The initial value
F���k ,0� is the partial static structure factor S���k� �5�. In
our simulation experiment, we are interested in the dynamic
properties of the mobile species, represented by F�k , t�
�F11�k , t�. This dynamic property will be theoretically cal-
culated applying the multicomponent self-consistent general-
ized Langevin equation �SCGLE� theory of colloid dynamics
�9� with the particular condition 	=2 and D2

0=0.

The SCGLE theory, explained in more detail in Refs.
�9,10�, is summarized by a self-consistent system of equa-
tions for the 	
	 matrices F�k , t� and F�s��k , t� �the latter
defined as F��

�s� �k , t������exp�ik ·�R����t���, where �R����t�
is the displacement of any of the N� particles of species �
over a time t, and ��� is Kronecker’s � function. Written in
matrix form and in Laplace space, and omitting the explicit k
dependence, the self-consistent system of equations reads

F�z� = „z + 
I + ��
*�z����−1k2DS−1
…

−1S �2�

and

F�s��z� = „z + 
I + ��
*�z����−1k2D…

−1, �3�

where S is the matrix of partial static structure factors, D and
��k� are diagonal matrices given by D������D�

0 and
����k�=����1+ �k /kc

����2�−1, where kc
��� is the location of the

first minimum �following the main peak� of S���k�. �
*�t� is
a diagonal matrix with its diagonal element �


�
*�t� given by

�

�
*�t� =

D�
0

24�3 � d3kk2�F�s��t�����c�nF�t�S−1�nh���,

�4�

where the elements of the k-dependent matrices h and c are
the Fourier transforms h���k� and c���k� of the Ornstein-
Zernike total and direct correlation functions, respectively.
Thus, h and c are related to S by S= I+�nh�n= �I
−�nc�n�−1, with the matrix �n defined as ��n�������

�n�.
The control parameters of our system are the interaction

parameters z, K1, and K2, and the volume fractions �1 and �2
�with ����n��3 /6�. Here we fix the value of the screening
parameter to z=0.15, and start by considering an equimolar
mixture with �1=�2=2.2
10−4. In our first simulation ex-
periment we start with the simplest case, namely, a monodis-
perse suspension of N=N1+N2 identical particles interacting
with the same pair potential �K1=K2=100�, which execute
Brownian motion. After thermalization, we stop the motion
of half of them, and let the other half constitute the mobile
species. Two additional experiments of the same kind were
performed for systems with the same parameters as above,
but varying the coupling parameters K1 and K2. Thus, the
second experiment corresponds to a more interacting system,
K1=K2=500, and the third to an asymmetric mixture such
that the matrix is formed by the more strongly interacting
particles, K2=500 and K1=100. These three experiments be-
long to the first kind referred to above, i.e., they involve a
matrix whose average static structure is identical to the par-
tial static structure factor S22�k� of an equilibrium mixture of
both species. In this kind of experiment, S22�k� and the other
static structural properties may be determined during the ini-
tial equilibration stage, before arresting the motion of the
matrix. As an example, in Fig. 1�a� we present the various
radial distribution functions g���r� simulated in this manner
in the third of these experiments.

We also performed parallel experiments of the second
kind, involving a preexisting matrix with prescribed average
structure. The prescribed structure we chose corresponds to
the equilibrium structure of a monocomponent system con-
taining only species 2. Thus, we first let the N2 particles
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equilibrate, and then freeze an arbitrary configuration in
which we then place the N1 particles of the other species.
The static and the dynamic properties involving the mobile
species are then simulated after the fluid of species 1 equili-
brates in the external field of the matrix in that particular
configuration. The results are then averaged over a sufficient
number �
50� of configurations of the matrix. In Fig. 1�b�
we present the resulting g���r� corresponding to the third
experiment of this second kind, involving a system with the
same parameters as in Fig. 1�a�.

These simulated structural properties are now employed
as the static input needed by the SCGLE theory, thus avoid-
ing the use of liquid state approximations �5�. The predic-
tions of the SCGLE theory for the dynamic properties of the
Brownian fluid immersed in the porous matrix are presented
in Fig. 2 for the three experiments of the first kind and for
only the last experiment of the second kind, namely, that
involving the asymmetric mixture with K2=500 and K1
=100. These results are compared with the corresponding
BD results for the normalized time-dependent diffusion co-
efficient D*�t���(�r�t�)2� / �6D0t� and for the collective in-
termediate scattering function F�k , t�=F11�k , t� of the mobile
species at fixed k and for the times t=0, t0, and 10t0, with
t0��2 /D0. Notice that for t=10to, D*�t� has relaxed from its
initial value of 1 toward, and close to, its asymptotic value,
characteristic of the long-time regime. Thus, the illustrative
data in this figure covers the so-called short- and
intermediate-time regimes, most easily accessible by Brown-
ian dynamics simulations or video-microscopy experiments.

From information such as that summarized in Fig. 2, we
may highlight the following. First, the description of the
SCGLE theory for symmetric systems �illustrated by the first

two rows� is highly accurate in the time regimes illustrated in
the figure. Second, the comparisons in Fig. 2 have essentially
the same quality as the corresponding comparisons involving
fully thermalized mixtures in which both species diffuse �9�.
Third, the theoretical predictions for F�k , t� in asymmetric
systems for both kinds of experiments �last two rows� have
similar levels of quantitative accuracy; the largest discrepan-
cies with the simulation data are illustrated by the results of
the fourth experiment, which are not particularly severe.
Clearly, reducing the rather small differences between theory
and simulation observed in Fig. 2 will require either refor-
mulating the intrinsic approximations of the SCGLE theory
or developing an extension similar to that carried out by
Krakoviack �11� for the mode coupling theory �MCT� �14�.
The comparisons above indicate, however, that the SCGLE
theory, devised to describe the dynamics of equilibrium col-
loidal mixtures, provides quite a reasonable description of
the dynamics of a monodisperse suspension permeating a
porous medium formed by a random array of fixed particles.

This approach may now be applied to explore other inter-
esting phenomena such as, for example, the dynamic prop-
erties of colloidal mixtures in porous media �2�. In fact, the
present theory, complemented by adequate liquid state ap-
proximations for the static structure �6�, may be used as a
fully theoretical first-principles approach to qualitatively
scan other regions of the state space to locate interesting
dynamic phenomena for which simulations or experiments
would be difficult to carry out, or are not yet available. In
doing this we only lose quantitative precision, but no quali-
tative accuracy. In fact, one of the objectives of adapting the
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FIG. 1. Brownian dynamics simulated radial distribution func-
tions g���r� of a colloidal fluid �species 1� diffusing through a po-
rous matrix formed by a second species of fixed particles, interact-
ing with the repulsive Yukawa potential with fixed screening
parameter z=0.15, volume fractions �1=�2=2.2
10−4, and repul-
sion strength parameters K1=100 and K2=500 with the porous ma-
trix generated in the presence �a�, and in the absence �b�, of the
mobile species.
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FIG. 2. Time-dependent self-diffusion coefficient D*�t� �left-
hand column� and partial intermediate scattering function F�k , t� for
t=0, t0, and 10t0 �right-hand column� of the diffusive species per-
meating the porous matrix, interacting with the repulsive Yukawa
potential with fixed screening parameter z=0.15 and volume frac-
tions �1=�2=2.2
10−4, but with parameters K1 and K2 given by
K1=K2=100 �first row�, K1=K2=500 �second row�, and K1=100
and K2=500 �third and fourth rows, respectively�. The symbols
represent Brownian dynamics results and the solid lines are the
SCGLE theoretical predictions.
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SCGLE theory to the description of the dynamics of colloi-
dal dispersions adsorbed in porous media is the description
of dynamic arrest phenomena in these systems. The analysis
of its accuracy in the short and intermediate times presented
here is an important step in the process of assessing its over-
all reliability. The SCGLE theory, however, has already been
successfully employed to describe dynamic arrest in bulk
monodisperse �10,15,16� and multicomponent �17� colloidal
systems.

Ordinary binary mixtures in which both species remain
mobile are, however, fundamentally different in principle
from the quenched-annealed mixtures considered here, in
which one species serves as the porous matrix in which the
other species diffuses. Thus, a relevant statistical mechanical
question involves the comparison of the two alternative
routes to describe the relaxation of the concentration fluctua-
tions of the mobile species, namely, the present approach,
and that developed by Krakoviack �11�. Although the latter

method might seem more systematic, spelling out the level
of equivalence with the present approach is an issue that
remains to be addressed. The results reported here indicate
that even if our method involves additional approximations,
it seems to provide a very satisfactory description of the
dynamics of the adsorbed fluid, at least in the regimes con-
sidered here. It will also be quite interesting to see the per-
formance of the present theory when applied to the descrip-
tion of the dynamics of the system close to the transition of
dynamic arrest of the adsorbed fluid described by Krakovi-
ack �11�. These issues are, of course, the subject of current
work.
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